

SummerSim-SCSC 2018, July 9-12, Bordeaux, France; ©2018 Society for Modeling and Simulation (SCS) International

A CELL-DEVS VISUALIZATION AND ANALYSIS PLATFORM

Bruno St-Aubin Omar Hesham

Department of Systems and Computer Engineering

Carleton University

Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, ON, Canada

1125 Colonel By Drive

Ottawa, ON, Canada

bruno.staubin@carleton.ca omarhesham@carleton.ca

Gabriel Wainer

Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, ON, Canada

gwainer@sce.carleton.ca

ABSTRACT

Although Cell-DEVS engines have been optimized for efficient modelling and simulation over a cell space,

visualization and analysis of the results they generate remains a complex task. They are limited by the high

volume of data that must be processed to identify patterns and tendencies in the model’s behavior,

particularly over time. In this paper, we present a lightweight, web-based visualization and analysis

platform as an alternative to costly proprietary software. The Cell-DEVS Simulation WebViewer is written

in HTML5 and JavaScript, requires no installation and offers a user-friendly way to post-process Cell-

DEVS simulation results. It allows users to visualize and animate their simulation results, to navigate to

different time steps, record videos of their simulation, inspect the state of individual cells, and export the

raw data in JSON for further processing in other external programs. It leverages the data-driven document

(D3) JavaScript API to provide statistical analysis capabilities in the form of animated charts that display

data derived from the simulation as it is being executed.

Keywords: DEVS, Cell-DEVS, Visualization and Analysis, D3.

1 INTRODUCTION

Visualization and analysis of simulation results is normally conducted as a post-processing step, once a

simulation has been successfully executed. The first step to analyze simulation results is often to simply

visualize the output of the simulation. A proper visualization of the results provides a better understanding

of the model’s behavior and helps identify issues that were undetected in the modelling phase. Further

analysis steps commonly include the use of visual statistical analysis tools such as charts and graphs to

identify patterns and tendencies in the results.

DEVS software development kits (SDK) typically focus on performance or the modeling process rather

than visualization and analysis tools. As can be observed in recent surveys of the field, DEVS frameworks

tend to provide only summary visualization and analysis capabilities (Van Tendeloo, Vangheluwe 2017;

Franceschini et al. 2014). More comprehensive exploration of results is usually relegated to third party

software such as MatLab, R or Tableau. Narrowing this gap would provide greater usability and possibly

contribute to a higher adoption rate of DEVS among the community of simulation and modeling users.

St-Aubin, Hesham, and Wainer

In this paper, a web based simulation visualization and analysis platform for cell based simulations will be

presented. The Cell-DEVS WebViewer was originally developed by the Advanced Real-time Simulation

Laboratory at Carleton University for academic use in courses and publications (Van Schyndel et al. 2016).

It has since been subject to many improvements. It is developed entirely in HTML5 and JavaScript, requires

no separate installation, can be run locally on a user’s computer and minimizes external dependencies.

Those features contribute towards the project’s aim of improving two key aspects of M&S:

i. Improving modeler’s feedback and iteration cycle through a user-friendly portable application that

uses hardware-accelerated rendering (HTML5 Canvas/WebGL) and stream-processing of large

simulation data sets.

ii. Improving communication and collaboration with domain experts and stakeholders through a more

interactive means of data visualization than traditional static media like images or video.

As research on modeling and simulation in the cloud continues to evolve, we wanted to build a client-side

platform mindful of the potential to support cloud services in the future. Thus the choice of web

technologies (HTML5/JavaScript/CSS) as the foundation for this project. This paper will discuss the

features of the WebViewer as well as its data visualization and analysis capabilities.

2 BACKGROUND

2.1 Discrete Event System Specification Overview

Although reviewing the DEVS method in detail is beyond the scope of this paper, a brief overview will

provide insight on how it made the development of a web based visualization and analysis platform

possible. Discrete Event Systems Specifications (DEVS) is a well-established technique for efficiently

modeling real-life systems that was first described by Bernard Zeigler in 1976 (Zeigler, Praehofer, Kim

1976). It provides a discrete event based method to abstract systems into models that can be used for

experimentation in cases where it is impractical or impossible to experiment on the real system. DEVS

supports hierarchical and modular model development, favoring the reusability of models. It defines a

rigorous formalism to manage inputs and outputs of atomic models, the basic blocks of DEVS. This

facilitates their integration into larger, more complex coupled models. It has been demonstrated that the

DEVS formalism can be used as a common denominator for any formal method of modeling, whether

discrete or continuous (Vangheluwe 2000).

Figure 1: DEVS Atomic model definition.

Briefly put, DEVS atomic models are event-driven models with state transitions occurring for two types of

events: scheduled (internal) events, and received messages (external) events. Every atomic model has a

persistent state s. When it receives an input x, the external state transition function 𝛿ext is triggered and the

state is updated. The time advance ta function, which specifies the time to the upcoming internal transition

𝛿int, is dependent on the new state. At this point, the atomic model will wait until either it receives another

external input, or the time advance function expires, whichever occurs first. In the latter case, the output

function λ, also dependent on the current state, will issue an output value y before triggering an internal

state transition function 𝛿int. In turn, the internal transition function will update the state s and a new ta is

St-Aubin, Hesham, and Wainer

calculated. The model will execute this loop until it passivates (i.e. ta is set to infinity). Without any further

external inputs, the model will remain passive. It is possible to integrate multiple atomic models into a

larger composite model, known as a coupled model. The integration is achieved by simply coupling the

inputs and output ports of one model to the appropriate input or output ports of other models.

Since the state in a DEVS model is updated in an event-driven fashion, processing cycles are not wasted on

uneventful time periods of the simulation. This is in contrast to discrete-time simulation where the

simulation is advanced in discrete timesteps regardless of the underlying state changes. Thus DEVS

generates the minimum amount of output data required for visualization and analysis of all state updates.

2.2 Cell-DEVS Overview

Cell-DEVS is an extension of DEVS that can be used for modeling and simulation of systems in a cell

space. It is a combination of DEVS and cellular automata with explicit timing delays (Wainer 2009). Each

cell acts as an individual atomic model and the cell space becomes a coupled model where all the cells are

linked to their neighbors through input and output ports, as in regular DEVS models. A cell-DEVS model

can be described by the conceptual diagram in Figure 2.

Figure 2: Cell-DEVS atomic model definition (with transport delay).

Each cell receives N inputs, usually from neighboring cells but they can also be provided by a regular DEVS

model. When a cell receives these inputs, it triggers τ, the local computing function that determines the next

state, s′. At this moment, if the cell’s future state s′ differs from its current state s, it will schedule an output

of its new state following a transport delay specified by d. Whenever a cell changes state, its new state s′

and scheduled time for transition are added to a local queue. Cells with transport delays will always output

their new state, provided a state change has occurred. If a cell’s state does not change following the local

computing function τ, it becomes passive and waits for further external events.

Cells can also be implemented using inertial delays which allow preemption of the cell’s state transition. A

cell with inertial delay that does not manage to keep its new state until the next scheduled time elapses is

preempted and foregoes its output phase for the preempted state transition. The definition of a cell with

inertial delay is slightly different than the one described by Figure 2, interested readers should refer to

(Wainer 2009) for a more thorough explanation.

3 THE PROPOSED WEB BASED CELL-DEVS WEBVIEWER

The Cell-DEVS WebViewer is a minimalistic client-side web application built entirely in HTML5 and

JavaScript. It requires only two external dependencies, Whammy.js to record videos of canvas animations

in .webm format and the Data-Driven Documents (D3) library for dynamic charts. In this section, the user

interface, the data structures and the general flow of the application will be discussed.

The WebViewer was originally built as an alternative to the desktop-only simulation viewer that was

included in the CD++ development environment (Chidisiuc, Wainer 2007). It is meant to offer a better

loading process for the simulation results, more control over the visualization and more user-friendly

St-Aubin, Hesham, and Wainer

visualization of results. A screen capture of the full WebViewer is shown in the appendix to this paper (See

Appendix A). This paper does not contain any code samples of the WebViewer. Instead, the complete code

for the WebViewer is made available at https://github.com/SimulationEverywhere/CD-WebViewer/ .

3.1 Loading Simulation Result Data

The first step to visualize a CD++ Cell-DEVS simulation is to load its output log files through a FileInput

widget (See 1 in Appendix A). When the user clicks on any of the 4 boxes, a standard file dialog will appear

from which the user can bulk upload the 4 files that are required to view a CD++ simulation: the model file

(.ma), the initial values file (.val), the log file (.log) and the color palette file (.pal). The model file (.ma) is

a text file that contains the simulation configuration parameters required to visualize the results. Notably,

input and output ports, grid size and, in some cases initial values are read from that file. They are parsed

from the .ma file using regular expressions. The initial values file (.val) contains the cell-space state for

time step 0. The .val file replaces the initial values parameter in the .ma file, only one of them is required.

The color palette (.pal) file defines the colors associated to each cell state for cell-space rendering.

The .log file contains all the transitions that were made by each cell in the cell-space for the duration of the

simulation. A single ASCII line is logged and timestamped for each output message, state transition, and

simulator substep in CD++ (e.g. “0 / L / Y / 00:00:29:600:0 / Cell(24,23)(625) / out / 30.0 / Cell (01)”

indicates an output of value 30 from cell (24, 23) at 29s:600ms). It is the largest of the 4 files and as such,

requires special consideration when parsing and storing in memory. For example, in the use case presented

in section 4, the output log reached 162 MB, for a cell space of 100 X 100 X 2 and 600 time steps. Compared

to other CD++ simulations, this one generates a small output due to its relatively small grid and short

duration. Depending on the simulation parameters, CD++ log files can reach a size of 50 GB.

Simply reading the file was the first challenge. It is impossible to directly load such large files in a string,

even on 64-bit systems, as we are constrained by browser-imposed memory limits (handful of GBs at best).

Hence, the log has to be streamed in chunks. Prior to HTML5, this would have been impractical if not

impossible to achieve using a web based platform. Indeed, for security reasons implemented by browsers,

files had to first be sent to a server then returned to the user either as is or after being parsed and transformed

by a service. The bandwidth and transfer time required for such a large file would have made the

WebViewer nearly impossible to use. Fortunately, significant and recent advances in web technologies

brought solutions to these issues. Particularly, the HTML5 specification was adopted in 2008 by the World

Wide Web Consortium (W3C) and started to see wider adoption (W3C 2017). Among HTML5’s features,

the FileReader object allows browsers to read local files with byte-wise precision. We took advantage of

this by reading the CD++ log files in smaller chunks of ~2MB each, processing each chunk into a more

optimized internal data structure, then proceeding to the next chunk. This process repeated until the file has

been read entirely.

As chunks of the .log file are being read, they must also be parsed and stored into memory. Considering the

simulation case study in section 4, if the entire cell-space state was stored in memory, it would require

20,000 number variables for each time step. JavaScript has only one format for numbers and it requires 64

bits of memory. For 600 time steps, approximately 600 X 20 000 X 64 bits of memory would be required

to store each cell-space state at each time step. This adds up to 384,000,000 bits or approximately 0.09

gigabyte of memory for a 162 MB file. Considering that .log files can reach over 300 times that size, storing

the entire cell-space state at each time step becomes unrealistic, the memory requirements would exceed

the capacity of standard computers. Furthermore, traditional compression techniques (analogous to video

encoding) would not be suitable as they would slow down read/write access to individual cell data. To work

around this issue, only the event-driven state changes are stored. When the user launches the visualization

playback, they are applied iteratively and the cell-space state is rendered in the canvas after each iteration.

https://github.com/SimulationEverywhere/CD-WebViewer/

St-Aubin, Hesham, and Wainer

3.2 Simulation Playback

Visualizing a Cell-Devs simulation is a straightforward process. Starting from the values of the cell-space

at time 0, the transitions for the next time step in the simulation log file are applied simultaneously. Then,

the cell-space is rendered to the screen. This process is repeated until the end of the log file is reached.

However, since the visualization is reconstructed from the transitions, navigating freely through the

simulation requires special consideration. When the user skips ahead or navigates back using the slider,

many time-steps may need to be applied to the current cell-space state to obtain the time-step requested by

the user. Depending on the duration of simulation, the size of the cell-space and the number of transitions

to apply, this can introduce significant delays. To work around this issue, as it reads the .log file, the

WebViewer caches the entire cell-space once every 10 time-steps. Then, when the user skips ahead or back,

the nearest cached frame is found and only the transitions from the cached frame to the requested time

frame need to be applied. This measure was implemented to improve the user experience.

Once the transitions have been read from the .log file and the cache built, the initial cell-space is drawn

using the initial values. Earlier versions of the viewer used HTML divs and Scalable Vector Graphics (SVG)

elements to render the cell grid. This worked well initially, but did not efficiently scale for more complex

models involving multiple layers with many ports each. It became prohibitive to use Document Object

Model (DOM) elements such as divs and SVG objects for rendering due to their computational and memory

costs. Thus, later developments employed the HTML5 Canvas instead (See 2 in Appendix A). Using this

approach meant that the cell grid remained a static HTML element, avoiding the overhead of DOM tree

manipulation. With finer control over the rendering logic, the Canvas element is well-suited for scenes with

a very large number of elements that need to be drawn, removed or redrawn frequently (MSDN 2017).

Furthermore, the Canvas element exposes the WebGL API for hardware-accelerated 2D and 3D rendering,

and it is compatible with third-party libraries such as Whammy (Kwok 2016) used here to record videos

directly from the canvas.

Once the initial cell-space is rendered, the WebViewer is ready to playback the reconstructed simulation

using the playback widget (See 3 in Appendix A). The user can control the speed of playback (Framerate),

navigate to specific time-steps.

The Cell-DEVS WebViewer also provides statistical analysis capabilities to the user in the form of charts.

The first one is a bar chart that shows the number of cells in each state for a given time frame of the

simulation. The second one is a heatmap that shows the number of transitions that were executed for each

cell at a given time step of the simulation. Both charts were implemented using the Data-Driven-Documents

(D3) API built by Mike Bostock around 2010. It is currently one of the most widespread JavaScript data

visualization library on the web and serves as a base for other higher-level data visualization libraries that

are derived from it. D3 provides a series of tools which allows developers to easily inspect, manipulate and

transform a native representation of the web, the document object model (DOM). It provides an easy way

to bind data to document elements (Bostock, Ogievetsky, Heer 2011).

4 A USE CASE FOR THE CELL-DEVS WEBVIEWER: THE LOGISTIC URBAN GROWTH

MODEL

Logistic urban growth (LUG) is a model used to simulate the urbanization of space based on the logistic

equation advanced by Pierre-François Verhulst in the early 19th century (Verhulst 1845; Brauer, Castillo-

Chàvez 2001). It stipulates that population growth, unimpeded by external factors, will follow an

exponential curve that will diminish as population grows and completely stop at population maturity. The

equation has been implemented successfully in many fields including chemistry, biology, ecology,

demography, economics, etc. For a given cell i,j, the probability of transition from a non-urbanized to an

urbanized state can be computed as follows:

St-Aubin, Hesham, and Wainer

𝑃𝑖𝑗
𝑡 =

1

1 + 𝑒−(𝑎0+∑ 𝑎𝑛𝑥𝑛,𝑖𝑗
𝑚
𝑛=1)

×
∑ 𝑐𝑜𝑛(𝑆𝑥𝑦 = 𝑢𝑟𝑏𝑎𝑛)

𝑥,𝑦=𝑛
𝑥,𝑦=1

𝑛2 − 1
× 𝐵𝑖𝑛(𝑐𝑒𝑙𝑙𝑖𝑗 ≠ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) × (1 + (− ln 𝑟)𝑎) (1)

Where

𝑎0 A constant

𝑎1, 𝑎2 … 𝑎𝑚 Regression coefficient factors for distance to geographic features

𝑥𝑛,𝑖𝑗 Normalized distance to geographic feature

𝑐𝑜𝑛 A condition that returns 1 if the x,y cell is urbanized.

𝐵𝑖𝑛 A binary function that returns 1 if the cell is not restricted

𝑟 Random real number between 0 and 1

𝑎 A parameter (0 to 10) that adjusts the effect of the stochastic factor

This section presents results of a LUG simulation using the Cell-Devs WebViewer. The cell-space used for

the simulation is a map with a simple spatial configuration. Using real data such as Google Maps images

or any other map providers would have required complex and extensive image analysis before being able

to use the data in a Cell-DEVS simulation. Although that is possible, the work required would have been

well beyond the scope of this paper. The simplified map provided enough context to adequately study the

capability of the WebViewer to view and analyze simulation results on a cell-space.

Color Value Feature name

10 Major roads

20 Water

99 Water restricted

30 Urban center

40 Econ. and tech. zone

50 Railway station

60 Highway Exit / Entrance

100 Non-urbanized cell

20 Urbanized cell

Figure 3: Sample of geographic maps used with a legend detailing the values associated to each color.

4.1 Rendering the Simulation

To render the simulation in the canvas element, the first step is to draw the cell-space for the initial values

that are stored in the transitions for time step 0. Looping through the X, Y and Z dimensions, an equal width

and height square is drawn for each cell and filled with the color that corresponds to its state as specified in

the palette file. For subsequent time-steps, only the cells that with a state transition are redrawn according

to the color palette. The canvas API provides all the necessary functions to achieve this. Though the concept

is easy to understand, it is a very meticulous process to implement since the canvas renders using a raster

bitmap. This requires that the developer continuously calculate the X, Y positions for the cells drawn. SVG

graphics would have likely been more convenient to work with since each cell becomes its own DOM

entity. With a handle on the DOM node, updating the color of the element requires only changing the fill

attribute value. Alas, using DOM nodes instead of canvas elements would limit the viewer’s ability to use

the canvas-only Whammy video capture library, and limit future 3D (WebGL) visualizaiton opportunities.

St-Aubin, Hesham, and Wainer

Figure 4: The initial values as rendered in the canvas. The left image is the layer that contains the cell-space

state. The right image is the layer that contains the Pdi factor (time-invariant).

Figure 5 : The same simulation as Figure 4 at different time-steps. Left image is time-step 200, right image

is time-step 400. As time progresses, more and more cells are drawn as urbanized.

As can be seen from figures 4 and 5, as time progresses in the simulation, more and more cells become

urbanized, as expected from the LUG model presented in section 4. Furthermore, the urbanization pattern

follows the Pdi layer, also as the model intended. Other factors can be confirmed visually from the animated

version. For example, it is easy to notice the stochastic disturbance (eq 1) when visualizing the results from

two simulations run with the same parameters (i.e, same regression coefficients, same spatial configuration,

same restricted area, etc.). The urbanization process will vary and the final state of the cell-space will be

different from one set of results to the other. Visual representation of the simulation is the first step in

confirming that the model behaves as intended. In depth data analysis using statistical tools is another

method that can help a user confirm that a model is appropriately implemented.

4.2 Data Analysis using D3

Currently, three data analysis tools have been integrated to the WebViewer, two that rely on Data-Driven

Documents (D3) to provide graphic charts and one that shows general statistics for the simulation. Each of

these tools are navigation enabled, meaning that they are updated as the user navigates across time-frames

using the slider or the fast forward and rewind buttons. The data required by these widgets is derived from

St-Aubin, Hesham, and Wainer

the current cell-space state and the transitions data used to reconstruct it. The derived data must be computed

at each time-step which requires many operations. Further work on this feature should include optimization.

The functions required to convert the data into a format that the statistics widgets can consume were coded

in a separate static class to decouple them from the data and make them easier to reuse. This pattern is very

loosely inspired by the Model-View-Controller pattern. The resulting data is also stored as a class variable

so the results are persistent and only need to be incremented when the user proceeds to the next time frame.

This way, less processing is required to go from one time-step to another.

The graphic chart developed (Figure 7) is a bar chart that shows the total number of cells for each state in

the cell-space at any given time in the simulation. The data required to fill the chart is obtained from the

current view buffer of the WebViewer. The current view buffer is the object that contains the entire cell-

space for the current time-step. It is basically a grid of dimensions X, Y, Z where each of the cell has a

number value equal to its state. Note that the statistical analysis tools currently operate only on one layer

and the user can select the layer from the LayerControl widget. To obtain the total number of cells for each

possible state, a nested loop through the X, Y dimensions for the selected Z layer suffices. For each iteration,

a variable corresponding to the total number of cells for that cell’s state is incremented. Also note that the

user can control which states he wishes to track for this chart and he can specify a range of states to be

tracked at once. The latter feature was implemented to be able to follow states in simulations where the

cell’s state is an interval value rather than nominal.

The bar chart complements the grid visualization and provides the exact total of cells for each state at a

given time-step. This can help confirm characteristics of the model and compare results for different

simulations. For example, considering two simulations that are identically configured except for having

different Pdi factors in layer 2:

Figure 6 : Two possible Pdi layer configurations (right) that share the same initial urban map (left).

We can see that the bar charts at different time-steps, presented in Figure 7, show that the simulation of

configuration (b) transitions at a much faster rate than (a). Although this information can already be gleaned

visually through the canvas element, the bar chart provides exact numbers. These observations are in line

with the model since higher Pdi factors will make it easier for each cell to meet the probability threshold of

the LUG equation (eq 1). We can easily see from the Pdi layers above that the alternative (b) has a higher

average value than alternative (a). The bar chart could also help to study the impact of the other factors in

the LUG model such as the value of the threshold for the LUG equation or the spatial configuration of the

map and the initial clusters of urban cells.

The second analysis chart developed for the Cell-DEVS Simulation WebViewer is a heatmap chart that

shows, for every cell in the cell-space, the total number of transitions accomplished. The data required to

fill the chart is obtained from the transitions data by adding up the transitions made by each cell for the

whole cell-space from time-step 0 to the current time-step. To avoid unnecessarily computing these values

from time-step 0 at each iteration, the total transitions for the current time-step are stored as a class variable

(a) (b)

St-Aubin, Hesham, and Wainer

along with the current time-step. When the WebViewer proceeds to the next time-step, only one set of

transitions must be added to the total transitions. When the user skips or goes back multiple frames, all the

sets of transitions between the previous time-step and the new time-step must be applied. This process could

benefit from using cached data, much like the cell-space rendering does for the view buffers that contain

the state of the cell-space.

The transition heatmap (Figure 8) can help a modeler determine whether cells are transitioning as expected

or to identify areas where more interesting transition patterns occur. In the case of the LUG simulation

presented in section 4, it confirms that the Pdi layer has the intended effect on the simulation and that the

restricted area cells (value 99) prevent any transitions. Considering the same initial values presented in

Figure 6, the transitions heatmaps for various time-steps are presented in Figure 8.

Many observations about the LUG simulation can be made by analyzing the heatmaps in Figure 8. A first

and obvious one is that the Bin factor in the LUG model works as intended. Indeed, the area of cells with

value 99 (i.e deep lake) have seen no transitions across the 600 time-steps of both simulations. This is

expected since the Bin function returns 0 when the current cell is restricted, thus resulting in a 0 probability

of transition which will never surpass the threshold. The impact of the Pdi factor is also clearly observable.

In both cases, unurbanized cells far from attracting features have much more difficulty converting to an

urbanized state. In scenario (a), the top-left cluster is dark red indicating that most cells in the cluster have

alternated between the urban and growing state but that their neighborhood did not urbanize efficiently.

Some cells have even reached 600 transitions, the maximum number possible, meaning that they have

alternated for the duration of the simulation without settling on the urban state since their neighborhood

was never fully urbanized. In simulation scenario (b), the cell-space never reaches full urbanization but

there are no cases where a cell has alternated for the entire duration of the simulation. However, it is obvious

that as the urbanized area expands outwards, away from the attracting factors, urbanization becomes more

difficult. The further the urban cluster is from the attracting factors, the darker the heatmap becomes.

The last tool added to the Cell-DEVS WebViewer is a general statistics widget (See 4 in Appendix A). It

shows the number of cells with a given state at each time-step as well as the average, mean, median and

standard deviation for the number of transitions made in the entire simulation. The transitions statistics are

calculated using built-in functions in D3. The states statistics are updated as the simulation runs but the

other values are not because it was too processor intensive and it slowed down the playback rate

significantly. For both cases, the data shown is derived from the same data that is used by both charts.

Time-Step 100 Time-Step 300

(a)

(b)

Figure 7: Bar chart comparing simulation statistics of different Pdi layer configurations.

St-Aubin, Hesham, and Wainer

5 CONCLUSION

In this paper, a web-based platform to visualize and analyze results of a CD++ simulation was presented.

This platform can be hosted on a server, making it easy to access, but is run entirely on the client side. This

eliminates the need to install desktop software, makes it easier to push updates to users and minimizes

dependencies on other technologies. Even though it is a web application, it shows good performance due

to recent developments in HTML5 and JavaScript. The HTML5 FileReader object allows the user to

quickly load a very large .log file, parse it into chunks and load it in memory for the WebViewer to render,

animate and analyze.

Future work on the web viewer should focus on the development of additional data analysis and

visualization tools. For example, a cell inspector function could allow the user to study the transitions within

a single cell. Such a function could also be expanded to study a range of cells representing an area of

interest. Another avenue is supporting a wider variety of charting options. Providing users with a dashboard

like application where they can configure their visualization tools according to their needs would provide

significant insight into their simulation in a user-friendly manner. Beyond visualization, we also look

forward to apply what we learned about handling event-driven simulation data to allow for efficient in-

browser modeling and simulation, further streamlining a modeler’s workflow and improving the modeling

and simulation process, in alignment with our goals as stated in the introduction section.

Data visualization tools focused on analyzing simulation results are infrequent. Dedicated simulation

analysis software could increase the productivity of users reducing the need for custom file parsing and data

charting solutions. A good visual analysis tool offers deeper insights into the simulation, the capability to

identify previously undetected errors in the model and to detect patterns in the state transition process.

Developing user-friendly, dedicated analysis tools, is also a way to make modeling and simulation

accessible to a wider public.

Time-Step 300 Time-Step 600

Figure 8 : Transition heatmap illustrating the impact of different Pdi configurations.

(a)

(b)

Time-Step 100

St-Aubin, Hesham, and Wainer

A APPENDIX

Figure 9 : The Cell-DEVS Simulation Viewer user interface.

St-Aubin, Hesham, and Wainer

REFERENCES

Bostock M., Ogievetsky V., Heer J., 2011, D3: “Data-Driven Documents”, IEEE Trans. Visualization &

Comp. Graphics (Proc. InfoVis).

Brauer F., Castillo-Chàvez C., 2001, “Mathematical Models in Population Biology and

Epidemiology”, Texts in Applied Mathematics, Vol. 40, Springer, 416 p., ISBN : 0-387-98902-1.

Chidisiuc C., Wainer G.A., 2007, “CD++ Builder: An Eclipse-based IDE for DEVS modeling”,

Proceedings of the SpringSim ’07 simulation multiconference, Vol 2., 235-240.

Feng Y., 2017, “Modeling Dynamic Urban Land-Use Change with Geographical Cellular Automata and

Generalized Pattern Search-Optimized Rules”, International Journal of Geographical Information

Science, Vol. 31, No. 6, Taylor & Francis Group, pp. 1198-1219 .

Franceschini, R., Bisgambiglia, P-A., Touraille, L., Hill, D., 2014, “A Survey of modelling and simulation

software frameworks using Discrete Event System Specification”, OpenAccess Series in Informatics,

Vol. 43, 40-49

Kevin Kwok, “Whammy”, https://github.com/antimatter15/whammy, consulted on January 7, 2016.

Microsoft Developer Network (MSDN), 2017, “SVG vs Canvas: How to Choose,

https://msdn.microsoft.com/en-us/library/gg193983(v=vs.85).aspx, consulted on Dec 16, 2017.

Vangheluwe, H.L.M., 2000, “DEVS as a Common Denominator for Multi-formalism Hybrid Systems

Modelling”, IEEE International Symposium on Computer-Aided Control System Design, IEEE.

Van Schyndel M., Hesham O., Wainer G., 2016. “Crowd Modeling in the Sun Life Building”, Proceedings

of the Symposium on Simulation for Architecture & Urban Design (SimAUD '16). SCS.

Van Tendeloo, Y., Vagheluwe, H., 2017, “An evaluation of DEVS simulation tools”, Simulation:

Transactions of the Society for Modeling and Simulation International, Vol. 93(2), 102-121

Verhulst P-F. , 1845, « Recherches mathématiques sur la loi d’accroissement de la population », Nouveaux

Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles.

Wainer, G.A, 2009, “Discrete-event modeling and simulation: a practitioner’s approach”, CRC Press,

Taylor & Francis Group, 485 p.

White R., Engelen G. , 1993, “Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach

to the Evolution of Urban Land-Use Patterns”, Environment and Planning, Col. 25, pp. 1175-1199.

World Wide Web Consortium (W3C), 2017, “File Reader API”, W3C Working Draft, 26 October 2017,

consulted on Dec 18, 2017.

World Wide Web Consortium (W3C), 2017, “HTML 5.2 W3C Recommendation – History”,

https://www.w3.org/TR/html5/index.html, consulted on Dec 16, 2017.

Zeigler, B.P., Praehofer, H., Kim T.G., 1976, “Theory of Modeling and Simulation”, New-York: Wiley-

Interscience.

AUTHOR BIOGRAPHIES

BRUNO ST-AUBIN. Is pursuing a PhD in Electrical and Computer Engineering at Carleton University

where he researches web based simulation and visualization. His email address is

bruno.staubin@carleton.ca.

OMAR HESHAM. is pursuing a PhD in Electrical and Computer Engineering at Carleton University,

where he researches agent-based simulation and visualization. More info at https://omarhesham.com.

GABRIEL WAINER is a Professor at the Department of Systems and Computer Engineering at Carleton

University. He is a Fellow of the Society for Modeling and Simulation International (SCS). His email

address is gwainer@sce.carleton.ca.

https://msdn.microsoft.com/en-us/library/gg193983(v=vs.85).aspx
https://www.w3.org/TR/html5/index.html
mailto:bruno.staubin@carleton.ca
https://omarhesham.com/
mailto:gwainer@sce.carleton.ca

